Return to CIG


View All Publications

Go To Publication by Year:

View Publications by Topic:



Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing


Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources


Integrated Assessment

Ocean Acidification


Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:

Other CSES Links:

About CSES

CSES Personnel

Data / Links


Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.

View: Abstract

Downscaling simulations of future global climate with application to hydrologic modelling

Salathé, E.P. 2005. Downscaling simulations of future global climate with application to hydrologic modelling. International Journal of Climatology 25:419-436.


This study approaches the problem of downscaling global climate model simulations with an emphasis on validating and selecting global models. The downscaling method makes minimal, physically based corrections to the global simulation while preserving much of the statistics of interannual variability in the climate model. Differences among the downscaled results for simulations of present-day climate form a basis for model evaluation. The downscaled results are used to simulate streamflow in the Yakima River, a mountainous basin in Washington, USA, to illustrate how model differences affect streamflow simulations. The downscaling is applied to the output of three models (ECHAM4, HADCM3, and NCAR-PCM) for simulations of historic conditions (1900-2000) and two future emissions scenarios (A2 and B2 for 2000-2100) from the IPCC assessment. The ECHAM4 simulation closely reproduces the observed statistics of temperature and precipitation for the 42 year period 1949-90. Streamflow computed from this climate simulation likewise produces similar statistics to streamflow computed from the observed data.

Downscaled climate-change scenarios from these models are examined in light of the differences in the present-day simulations. Streamflows simulated from the ECHAM4 results show the greatest sensitivity to climate change, with the peak in summertime flow occurring 2 months earlier by the end of the 21st century.