Return to CIG

Search

View All Publications

Go To Publication by Year:

View Publications by Topic:

Adaptation

Agriculture

Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing

Energy

Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources

Infrastructure

Integrated Assessment

Ocean Acidification

Oceanography

Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:


Other CSES Links:

About CSES

CSES Personnel

Data / Links

Publications

Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.


View: Abstract

Effects of temperature and precipitation variability on snowpack trends in the western United States

Hamlet, A.F., P.W. Mote, M. Clark, and D.P. Lettenmaier. 2005. Effects of temperature and precipitation variability on snowpack trends in the western United States. Journal of Climate 18(21): 4545-4561.

Abstract

Recent studies have shown substantial declines in snow water equivalent (SWE) over much of the western US in the last half century, as well as trends towards earlier spring snowmelt and peak spring streamflows. These trends are influenced both by interannual and decadal scale climate variability, and also by temperature trends at longer time scales that are generally consistent with observations of global warming over the 20th century.

In this study we examine linear trends in April 1 snow water equivalent (SWE) over the western US as simulated by the Variable Infiltration Capacity hydrologic model implemented at 1/8 degree latitude-longitude spatial resolution, and driven by a carefully quality controlled gridded daily precipitation and temperature data set for the period 1915-2003. The long simulations of snowpack are used as surrogates for observations, and are the basis for an analysis of regional trends in snowpack over the western U.S. and southern British Columbia.

By isolating the trends due to temperature and precipitation in separate simulations, the influence of temperature and precipitation variability on the overall trends in SWE is evaluated. Downward trends in April 1 SWE over the western U.S. from 1916 to 2003, 1947-2003, and for a time series constructed using two warm Pacific Decadal Oscillation (PDO) epochs concatenated together, are shown to be primarily due to widespread warming. These temperature-related trends are not well explained by decadal climate variability associated with the PDO. Trends in SWE associated with precipitation trends, however, are very different in different time periods and are apparently largely controlled by decadal variability rather than longer term trends in climate.