Return to CIG


View All Publications

Go To Publication by Year:

View Publications by Topic:



Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing


Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources


Integrated Assessment

Ocean Acidification


Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:

Other CSES Links:

About CSES

CSES Personnel

Data / Links


Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.

View: Abstract

Growth-climate relations of Lodgepole Pine in the North Cascades National Park, Washington

Case, M.J., and D.L. Peterson. 2007. Growth-climate relations of Lodgepole Pine in the North Cascades National Park, Washington. Northwest Science 81(1):62-75.


Information about the sensitivity of lodgepole pine to climate will allow forest managers to maximize growth, better understand how carbon sequestration changes over time, and better model and predict future ecosystem responses to climate change. We examined the effects of climatic variability during the 20th century on the growth of lodgepole pine along an elevation gradient in the North Cascades National Park, Washington. Multivariate analysis and correlation analysis were used to simplify growth patterns and identify climate-growth relations. Mid-elevation chronologies correlated negatively with growing season maximum temperature and positively with growing season precipitation. By contrast, high-elevation chronologies correlated positively with annual temperatures and winter Pacific Decadal Oscillation index. Projected increases in summer temperatures will likely cause greater soil moisture stress in many forested ecosystems and the potential of extended summer drought periods over decades may significantly alter spatial patterns of productivity, thus impacting carbon storage. The productivity of lodgepole pine likely will decrease at sites with shallow, excessively drained soils, south and west facing aspects, and steep slopes, but increase at high-elevation sites.