Return to CIG


View All Publications

Go To Publication by Year:

View Publications by Topic:



Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing


Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources


Integrated Assessment

Ocean Acidification


Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:

Other CSES Links:

About CSES

CSES Personnel

Data / Links


Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.

View: Abstract

Local and large-scale climate forcing of Puget Sound oceanographic properties on seasonal to interdecadal timescales

Moore, S.K., N.J. Mantua, J.P. Kellogg, and J.A. Newton. 2008. Local and large-scale climate forcing of Puget Sound oceanographic properties on seasonal to interdecadal timescales. Limnology and Oceanography 53(5): 1746-1758.


The influence of climate on Puget Sound oceanographic properties is investigated on seasonal to interannual timescales using continuous profile data at 16 stations from 1993 to 2002 and records of sea surface temperature (SST) and sea surface salinity (SSS) from 1951 to 2002. Principal components analyses of profile data identify indices representing 42%, 58%, and 56% of the total variability at depth-station combinations for temperature, salinity, and density, respectively, and 22% for water column stratification. Variability in the leading pattern of Puget Sound water temperature and salinity profiles is well correlated with local surface air temperatures and freshwater inflows to Puget Sound from major river basins, respectively. SST and SSS anomalies are informative proxies for the leading patterns of variations in Puget Sound temperature and salinity profiles. Using this longer time history of observations, we find that SST and SSS anomalies also have significant correlations with Aleutian Low, El Niño/Southern Oscillation, and Pacific Decadal Oscillation variations in winter that can persist for up to three seasons or reemerge the following year. However, correlations with large-scale climate variations are weaker compared to those with local environmental forcing parameters.