Return to CIG

Search

View All Publications

Go To Publication by Year:

View Publications by Topic:

Adaptation

Agriculture

Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing

Energy

Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources

Infrastructure

Integrated Assessment

Ocean Acidification

Oceanography

Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:


Other CSES Links:

About CSES

CSES Personnel

Data / Links

Publications

Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.


View: Abstract

Attribution of declining western U.S. snowpack to human effects

Pierce, D.W., T. Barnett, H. Hidalgo, T. Das, C. Bonfils, B.D. Santer, G. Bala, M. Dettinger, D. Cayan, A, Mirin, A.W. Wood, and T. Nazawa. 2008. Attribution of declining western U.S. snowpack to human effects. Journal of Climate 21(23): 6425-6444, doi:10.1175/2008JCLI2405.1.

Abstract

Observations show snowpack has declined across much of the western United States over the period 1950-99. This reduction has important social and economic implications, as water retained in the snowpack from winter storms forms an important part of the hydrological cycle and water supply in the region. A formal model-based detection and attribution (D-A) study of these reductions is performed. The detection variable is the ratio of 1 April snow water equivalent (SWE) to water-year-to-date precipitation (P), chosen to reduce the effect of P variability on the results. Estimates of natural internal climate variability are obtained from 1600 years of two control simulations performed with fully coupled ocean-atmosphere climate models. Estimates of the SWE/P response to anthropogenic greenhouse gases, ozone, and some aerosols are taken from multiple-member ensembles of perturbation experiments run with two models. The D-A shows the observations and anthropogenically forced models have greater SWE/P reductions than can be explained by natural internal climate variability alone. Model-estimated effects of changes in solar and volcanic forcing likewise do not explain the SWE/P reductions. The mean model estimate is that about half of the SWE/P reductions observed in the west from 1950 to 1999 are the result of climate changes forced by anthropogenic greenhouse gases, ozone, and aerosols.