Return to CIG

Search

View All Publications

Go To Publication by Year:

View Publications by Topic:

Adaptation

Agriculture

Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing

Energy

Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources

Infrastructure

Integrated Assessment

Ocean Acidification

Oceanography

Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:


Other CSES Links:

About CSES

CSES Personnel

Data / Links

Publications

Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.


View: Abstract

The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity

Climate Change Science Program 2008. The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. P. Backlund, A. Janetos, D. Schimel, J. Hatfield, K. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, D. Wolfe, M. Ryan, S. Archer, R. Birdsey, C. Dahm, L. Heath, J. Hicke, D. Hollinger, T. Huxman, G. Okin, R. Oren, J. Randerson, W. Schlesinger, D. Lettenmaier, D. Major, L. Poff, S. Running, L. Hansen, D. Inouye, B.P. Kelly, L Meyerson, B. Peterson, R. Shaw. U.S. Environmental Protection Agency, Washington, DC., USA, 362 pp.

Abstract

This report provides an assessment of the effects of climate change on U.S. agriculture, land resources, water resources, and biodiversity. It is one of a series of 21 Synthesis and Assessment Products (SAP) that are being produced under the auspices of the U.S. Climate Change Science Program (CCSP).

This SAP builds on an extensive scientific literature and series of recent assessments of the historical and potential impacts of climate change and climate variability on managed and unmanaged ecosystems and their constituent biota and processes. It discusses the nation's ability to identify, observe, and monitor the stresses that influence agriculture, land resources, water resources, and biodiversity, and evaluates the relative importance of these stresses and how they are likely to change in the future. It identifies changes in resource conditions that are now being observed, and examines whether these changes can be attributed in whole or part to climate change. The general time horizon for this report is from the recent past through the period 2030-2050, although longer-term results out to 2100 are also considered.

There is robust scientific consensus that human-induced climate change is occurring. Records of temperature and precipitation in the United States show trends consistent with the current state of global-scale understanding and observations of change. Observations also show that climate change is currently impacting the nation's ecosystems and services in significant ways, and those alterations are very likely to accelerate in the future, in some cases dramatically. Current observational capabilities are considered inadequate to fully understand and address the future scope and rate of change in all ecological sectors. Additionally, the complex interactions between change agents such as climate, land use alteration, and species invasion create dynamics that confound simple causal relationships and will severely complicate the development and assessment of mitigation and adaptation strategies.

Even under the most optimistic CO2 emission scenarios, important changes in sea level, regional and super-regional temperatures, and precipitation patterns will have profound effects. Management of water resources will become more challenging. Increased incidence of disturbances such as forest fires, insect outbreaks, severe storms, and drought will command public attention and place increasing demands on management resources. Ecosystems are likely to be pushed increasingly into alternate states with the possible breakdown of traditional species relationships, such as pollinator/plant and predator/prey interactions, adding additional stresses and potential for system failures. Some agricultural and forest systems may experience near-term productivity increases, but over the long term, many such systems are likely to experience overall decreases in productivity that could result in economic losses, diminished ecosystem services, and the need for new, and in many cases significant, changes to management regimes.