Return to CIG

Search

View All Publications

Go To Publication by Year:

View Publications by Topic:

Adaptation

Agriculture

Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing

Energy

Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources

Infrastructure

Integrated Assessment

Ocean Acidification

Oceanography

Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:


Other CSES Links:

About CSES

CSES Personnel

Data / Links

Publications

Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.


View: Abstract

Forest ecosystems, disturbance, and climatic change in Washington State, USA

Littell, J.S., E.E. Oneil, D. McKenzie, J.A. Hicke, J.A. Lutz, R.A. Norheim, and M.M. Elsner. 2010. Forest ecosystems, disturbance, and climatic change in Washington State, USA. Climatic Change 102(1-2): 129-158, doi: 10.1007/s10584-010-9858-x.

Abstract

Climatic change is likely to affect Pacific Northwest (PNW) forests in several important ways. In this paper, we address the role of climate in four forest ecosystem processes and project the effects of future climatic change on these processes across Washington State. First, we relate Douglas-fir growth to climatic limitation and suggest that where Douglas-fir is currently water-limited, growth is likely to decline due to increased summer water deficit. Second, we use existing analyses of climatic controls on tree species biogeography to demonstrate that by the mid 21st century, climate will be less suitable for key species in some areas of Washington. Third, we examine the relationships between climate and the area burned by fire and project climatically driven regional and sub-regional increases in area burned. Fourth, we suggest that climatic change influences mountain pine beetle (MPB) outbreaks by increasing host-tree vulnerability and by shifting the region of climate suitability upward in elevation. The increased rates of disturbance by fire and mountain pine beetle are likely to be more significant agents of changes in forests in the 21st century than species turnover or declines in productivity, suggesting that understanding future disturbance regimes is critical for successful adaptation to climate change.