Return to CIG

Search

View All Publications

Go To Publication by Year:

View Publications by Topic:

Adaptation

Agriculture

Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing

Energy

Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources

Infrastructure

Integrated Assessment

Ocean Acidification

Oceanography

Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:


Other CSES Links:

About CSES

CSES Personnel

Data / Links

Publications

Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.


View: Abstract

Effects of projected climate change on energy supply and demand in the Pacific Northwest and Washington State

Hamlet, A.F., S-Y. Lee, K.E.B. Mickelson, and M.M. Elsner. 2010. Effects of projected climate change on energy supply and demand in the Pacific Northwest and Washington State. Climatic Change 102(1-2): 103-128, doi: 10.1007/s10584-010-9857-y.

Abstract

Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration.

We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.0-4.2% in winter, decrease by about 13-16% in summer, with annual reductions of about 2.5-4.0%, with larger decreases of 18-21% in summer projected for the end of the 21st century. Although population growth is projected to increase heating energy demand overall, warming results in reduced per capita demand. Residential cooling energy demand, however, increases rapidly (both overall and per capita) due to increasing population, cooling degree days, and air conditioning penetration.