Return to CIG


View All Publications

Go To Publication by Year:

View Publications by Topic:



Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing


Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources


Integrated Assessment

Ocean Acidification


Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:

Other CSES Links:

About CSES

CSES Personnel

Data / Links


Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.

View: Abstract

Future land use and land cover influences on regional biogenic emissions and air quality in the United States

Chen, J., J. Avise, A. Guenther, C. Wiedinmyer, E.P. Salathé, R.B. Jackson, and B. Lamb. 2009. Future land use and land cover influences on regional biogenic emissions and air quality in the United States. Atmospheric Environment 43(36):5771-5780, doi:10.1016/j.atmosenv.2009.08.015.


A regional modeling system was applied with inputs from global climate and chemistry models to quantify the effects of global change on future biogenic emissions and their impacts on ozone and biogenic secondary organic aerosols (BSOA) in the US. Biogenic emissions in the future are influenced by projected changes in global and regional climates and by variations in future land use and land cover (LULC). The modeling system was applied for five summer months for the present-day case (1990-1999, Case 1) and three future cases covering 2045-2054. Individual future cases were: present-day LULC (Case 2); projected-future LULC (Case 3); and future LULC with designated regions of tree planting for carbon sequestration (Case 4).

Results showed changing future meteorology with present-day LULC (Case 2) increased average isoprene and monoterpene emission rates by 26% and 20% due to higher temperature and solar insolation. However when LULC was changed together with climate (Case 3), predicted isoprene and monoterpene emissions decreased by 52% and 31%, respectively, due primarily to projected cropland expansion. The reduction was less, at 31% and 14% respectively, when future LULC changes were accompanied by regions of tree planting (Case 4).

Despite the large decrease in biogenic emission, future average daily maximum 8-h (DM8H) ozone was found to increase between +8 ppbv and +10 ppbv due to high future anthropogenic emissions and global chemistry conditions. Among the future cases, changing LULC resulted in spatially varying future ozone differences of -5 ppbv to +5 ppbv when compared with present-day case. Future BSOA changed directly with the estimated monoterpene emissions. BSOA increased by 8% with current LULC (Case 2) but decreased by 45%-28% due to future LULC changes.

Overall, the results demonstrated that on a regional basis, changes in LULC can offset temperature driven increases in biogenic emissions, and, thus, LULC projection is an important factor to consider in the study of future regional air quality.