Return to CIG


View All Publications

Go To Publication by Year:

View Publications by Topic:



Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing


Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources


Integrated Assessment

Ocean Acidification


Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:

Other CSES Links:

About CSES

CSES Personnel

Data / Links


Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.

View: Abstract

Is the upper ocean warming? Comparisons of 50-year trends from different analyses

Carson, M., and D.E. Harrison. 2008. Is the upper ocean warming? Comparisons of 50-year trends from different analyses. Journal of Climate 21:2259-2268, doi: 10.1175/2007JCLI2002.1.


There is great interest in World Ocean temperature trends, yet the historical global ocean database has very uneven coverage in space and time. Previous work on 50-yr upper ocean temperature trends from the NOAA ocean data archive is extended here. Trends at depths from 50 to 1000 m are examined, based on observations gridded over larger regions than in the earlier study. Despite the use of larger grid boxes, most of the ocean does not have significant 50-yr trends at the 90% confidence level (CL). In fact only 30% of the ocean at 50 m has 90% CL trends, and the percentage decreases significantly with increasing depth.

As noted in the previous study, there is much spatial structure in 50-yr trends, with areas of strong warming and strong cooling. These trend results are compared with trends calculated from data interpolated to standard levels and from a highly horizontally interpolated version of the dataset that has been used in previous heat content trend studies. The regional trend results can differ substantially, even in the areas with statistically significant trends. Trends based on the more interpolated analyses show more warming.

Together with major temporal and spatial sampling limitations, the previously described strong interdecadal and spatial variability of trends makes it very difficult to formally estimate uncertainty in World Ocean averages, but these results suggest that upper ocean heat content integrals and integral trends may be substantially more uncertain than has yet been acknowledged. Further exploration of uncertainties is needed.