Return to CIG


View All Publications

Go To Publication by Year:

View Publications by Topic:



Air Quality

Aquatic Ecosystems and Fisheries

Background Papers

Climate: Atmospheric Modeling

Climate: Coupled Atmosphere-Ocean Modeling

Climate: Diagnostics

Climate: Global Climate

Climate: Ocean Modeling

Climate: PNW Climate

Climate: Regional Climate Modeling

Coastal Ecosystems

Coastal Environments

Conservation Biology

Data Analysis and Sharing


Fact Sheets

Forecasts and Applications

Forest Ecosystems

Human Health

Hydrology and Water Resources


Integrated Assessment

Ocean Acidification


Program Documents

Science Advisory Reports

Societal Dimensions

Special Reports

Theses and Dissertations

View Publications by Author:

Search the Publication Abstracts:

Other CSES Links:

About CSES

CSES Personnel

Data / Links


Welcome to the publications directory for the Climate Impacts Group and the Climate Dynamics Group. Please contact the web administrator for assistance with any of these publications.

View: Abstract

Paleoreconstruction of cool season precipitation and warm season streamflow in the Pacific Northwest with estimates of uncertainties and applications to climate change assessments

Lutz, E.R., A.F. Hamlet, and J.S. Littell. 2012. Paleoreconstruction of cool season precipitation and warm season streamflow in the Pacific Northwest with estimates of uncertainties and applications to climate change assessments. Water Resources Research 48, W01525, doi:10.1029/2011WR010687.


Long-term streamflow reconstructions help characterize climate variability and extreme climatic events, such as droughts, which play a crucial role in water resource planning. Dendrohydrological reconstructions generally build on indirect associations between streamflow and radial tree growth, both of which depend on cool season precipitation in the Pacific Northwest. We develop a new approach that integrates a tree ring reconstruction of cool season precipitation with historical meteorological data and a physically based hydrologic model to reconstruct warm season streamflow and streamflow uncertainty. The Upper Yakima Basin in Washington state is used as a test case.

We applied objective screening, principal components analysis, and multiple linear regression to reconstruct 366 years of basin-average cool season precipitation. The reconstruction was integrated with five temporally and spatially distributed cool season precipitation patterns spanning the historical range of natural variability. These distributed meteorological reconstructions were used as inputs to the Variable Infiltration Capacity (VIC) hydrologic model over the Yakima basin to produce an ensemble of warm season streamflows for each reconstructed year. The resultant streamflow reconstruction retains dendroclimatic information and quantifies the inherent uncertainty in warm season streamflow associated with historical meteorology. Finally, the meteorological reconstructions were systematically perturbed and used to drive the VIC to examine the potential impacts of climate change on warm season streamflow over the 366-year record.

Despite projected wetter conditions in the future, less precipitation is stored as snowpack (due to warmer winter temperatures) and consequently warm season streamflow will be systematically reduced. The combination of long records of variability and systematic changes related to climate change provides useful information about the combined effects of natural variability and projected systematic changes in climate to support 21st-century water planning.